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TH/5-2Rb Principal Results 

 First order FLR corrections from “gyro-viscous cancellation” in two-fluid 

model are necessary to agree  with gyro-fluid results for high ion temperature. 

 

 Higher ion temperature introduces more FLR stabilizing effects, thus reduces 

ELM size. 

 

 Developed a fast non-Fourier method for the computation of Landau-fluid 

closure terms; 

 Implemented the fast non-Fourier method through the solution of matrix 

equations in which the matrices are tridiagonal or narrowly banded;  

 

 Implemented 3+0 {n, u||, P||} & 3+1 {{n, u||, P||},P} electrostatic model 

equations; 

 Implemented 1+0 (n) & 2+0 {n, u||} electromagnetic model for ELM simulations; 

 

 Benchmarked linear GLF simulations with eigen-value calculations  

 Benchmarked with other two-fluid codes;  
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TH/5-2Rb Table of Contents 
 Edge 3-field gyro-fluid models for type-I ELMs 

 
 An isothermal electromagnetic 3-field gyro-fluid model with vorticity formulation 

generalized from Snyder-Hammett gyro-fluid model [1] for edge plasmas. 

 In long-wavelength limit, this set of gyro-fluid equations is  reduced to previous 3-field 

two-fluid model with additional gyro-viscous terms resulting from the incomplete “gyro-

viscous cancellation” in two-fluid model given by Xu et al [2].  

 Utilizing the Padé approximation for the modified Bessel functions, this set of gyro-fluid 

equations is implemented in the BOUT++ framework with full ion FLR effects. 

 An assumption of an ion steady-state with subsonic flow velocity leads to a model that 

the ion response is adiabatic for both equilibrium and axisymmetric component of 

fluctuations, such as Zie<F>=Tiln <Pi>. 

 

 Edge 4-field gyro-fluid models for small ELMs 

 

 A fast non-Fourier method for the computation of Landau-fluid closure terms 

 

 BOUT++ core gyrofluid simulations of ion temperature gradient turbulence 
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[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 
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3-field isothermal gyrofluid model* for ELM simulation: consider the 
large density gradient at H-mode pedestal 

*) P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001) 
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In the presence of large density gradient, gyro-fluid and two-fluid 
model show qualitative difference when k

⊥
ρi is large 

 Two-fluid model: no stabilizing on 
high-n modes,  

 Gyro-fluid model: strong FLR 
stabilizing on high-n modes.  

Consider the large density gradient 
at H-mode pedestal: 

Normalized wavenumber (kqi)  

What causes the disappear of stabilizing in 
twofluid model? 

Z (m) 

X (m) 



TH/5-2Rb 

Normalized flux y (radial direction)  

 The instability does not localize at peak 
pressure gradient region  

 Not pressure gradient driven 
      ballooning mode, but other instability 
 Lowest order ballooning equation changes 

 

 Ion diamagnetic effect stabilizes 
ballooning modes  first term decreases 

 Ion density gradient introduces  
      Ion-Density-Gradient mode: second 
      term become dominant  

When                increases: 

Ion-Density-Gradient mode in twofluid model 

Twofluid local dispersion relation 
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Gyroviscous terms are necessary to stabilize  
Ion-Density-Gradient modes and should be kept in twofluid model 

• At long wavelength limit, gyro-fluid goes back to two-fluid but with additional 

gyroviscous terms 

Normalized wavenumber (kqi)  

Only ion diamagnetic effect in two-fluid model is not sufficient to represent FLR 
stabilizing if density gradient is large! 

• Gyroviscous terms [1] represent 
necessary FLR effect to stabilize 
IDG modes and should be kept in 
twofluid model 

• If without gyroviscous terms, IDG 
mode will lead to much larger 
ELM crash in nonlinear phase 
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Without gyroviscous terms, IDG mode leads to larger ELM 
crash and more energy loss at nonlinear phase 

ELM size:  0.06 ELM size:  0.13 

Pressure perturbation at ELM crash time 



TH/5-2Rb 
In isothermal limit, linear relation for n=0 component of 

electric field cannot get nonlinear saturation 
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Net zonal flow is set to be zero: 

Equilibrium part: 

Linear relation:   

R (m) 

Z 
(m

) 

Strong n=0 EXB:  
 Smooth perturbation in 

poloidal direction  
 Reduce radial transport 

Very weak n=0 EXB:  
 Keep streamer like structure 
 Cannot reduce radial transport 
 No saturation 

 n=0 component of electric field 
determines the saturation phase; 

 This linear relation is not correct. 



TH/5-2Rb 
Nonlinear relation generates larger EXB shearing at 

pedestal top to get the saturation phase 
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Pedestal bottom: n=0 EXB is still strong due to 1/n0 

Pedestal top: n=0 EXB flow is enough to reduce 
radial transport and generate saturation 



TH/5-2Rb 
Higher ion temperature introduces more FLR 

stabilizing effects, thus reduces ELM size 
 Hyper-resistivity is necessary to ELM crash, but ELM size is weakly sensitive to hyper-

resistivity; 
 With fixed pressure profile, high ion temperature introduce stronger FLR effect and thus 

leads to smaller ELM size 0.2 
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(Without density gradient in vorticity)  
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P. W. Xi, X. Q. Xu, X. G. Wang, and T. Y. Xia, Phys. Plasmas 19, 092503 (2012) 

Equilibrium EXB shear flow can stabilize high-n ballooning modes and reduce ELM 
size, but introduces Kelvin-Helmholtz instability and leads to larger ELM when flow 
shear is too large.  



TH/5-2Rb 

Gyrokinetic Vorticity 

Pressure 

Ion parallel 
momentum 

Ohm’s law 

Vorticity definition 

• Including ion acoustic wave  
    drift ballooning modes*  
    May appear at high-n region  gyrofluid 

Aiba, 2011, H-mode workshop 
*R. J. Hastie et al. Phys. Plasma 10(2003) 4405 

2+0 isothermal gyrofluid model for ELM simulation 



TH/5-2Rb Drift ballooning mode: 

Ion parallel motion            ion acoustic wave 
Electron pressure in Ohm’s law            electron drift wave 

*R. J. Hastie et al. Phys. Plasma 10(2003) 4405 

Wave resonance condition 

Local dispersion relation* 

NO drift ballooning mode! 

Instability for small ELM? Probably not! 

Ion diamagnetic 
stabilizing disappear 

Implied from local theory Our results 

14 
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Local dispersion relation* 

Conditions for drift ballooning mode are difficult to satisfy in real discharges 

• Conditions for drift ballooning 
A: Finite local ideal MHD growth rate 
B: Wave resonant condition is satisfied 
at the finite pressure gradient region  

n=10   B not A 
n=50   A not B  

15 

In real discharges, these two conditions are 
difficult to satisfy simultaneously. 
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16 

Ion acoustic wave and electron drift wave have stabilizing effect on P-B mode  

Drift ballooning mode is unlikely  the 
instability triggering small ELM in real 
discharges (DIIID, C-Mod, NXTX, ITER) 

W/O Vi/Pe With Vi/Pe 

Ion acoustic wave and electron 
drift wave has stabilizing effect on 
P-B mode  

ITER  
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Two-fluid 4-field HHM electromagnetic model 

Finite Lamor Radius effects stabilize p-b modes. 

T. N. Rhee, et al 
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Tokamak edge: 

 kinetic effects important -> need 

Landau-fluid (LF) operators  

 

 

 Large spatial inhomogeneities & 

complicated boundary 

 need non-Fourier implementation 

 Useful accurate approximation:  

 

 

 

 

 The new method has Fourier-like 
computational scaling 

 The error is less than 1.5%. 

Accurate non-Fourier methods for Landau-fluid operators 



TH/5-2Rb The New Methods has Fourier-Like Computational Scaling 
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• For small number of grid cells, direct matrix multiplication is as efficient as Fourier 

• Non-Fourier, with fixed N, scales as Nz, c.f. Nz
2 for direct convolution 

• Crossover point is at Nz ≈ 100 − 200 ⇒ advantage for Nz ≥100 - 200. 
 



TH/5-2Rb linear response function matches the published results from HP90 

paper, hence the code and scheme must be correct! 
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Landau-fluid operators 

Nonlocal closure for q(T) uses sum of Lorentzians 
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Core Gyrofluid Simulations of Ion Temperature Gradient Turbulence  

BOUT++ gyro-fluid results approach gyro-kinetic results 

The fluid moment 
approach generates an 
approximation to the 
kinetic equation that 
increases in accuracy 
as more moments are 
retained. 



TH/5-2Rb Core Gyrofluid Simulations of Ion Temperature Gradient Turbulence  

Excellent agreement of ITG mode between BOUT++ and Eigenvalue Solver 

In order to verify the BOUT++ GLF results, Korean GLF Team member, Dr SS 
Kim, developed a gyro-fluid non-local eigen-value solver to solve the same 
exact set of equations as in BOUT++ framework.  
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Core Gyrofluid Simulations of Ion Temperature Gradient Turbulence  

Eigenvalue Solver guides the GLF model development 


